Search results for " Topological Space"
showing 10 items of 16 documents
A fuzzification of the category of M-valued L-topological spaces
2004
[EN] A fuzzy category is a certain superstructure over an ordinary category in which ”potential” objects and ”potential” morphisms could be such to a certain degree. The aim of this paper is to introduce a fuzzy category FTOP(L,M) extending the category TOP(L,M) of M-valued L- topological spaces which in its turn is an extension of the category TOP(L) of L-fuzzy topological spaces in Kubiak-Sostak’s sense. Basic properties of the fuzzy category FTOP(L,M) and its objects are studied.
Introduction to generalized topological spaces
2011
[EN] We introduce the notion of generalized topological space (gt-space). Generalized topology of gt-space has the structure of frame and is closed under arbitrary unions and finite intersections modulo small subsets. The family of small subsets of a gt-space forms an ideal that is compatible with the generalized topology. To support the definition of gt-space we prove the frame embedding modulo compatible ideal theorem. Weprovide some examples of gt-spaces and study key topological notions (continuity, separation axioms, cardinal invariants) in terms of generalized spaces.
Topological Space
2020
We introduce some formal definition of Topological Space in the the framework of the so-called classical mathematics.
On fuzzification of topological categories
2014
This paper shows that (L,M)-fuzzy topology of U. Hohle, T. Kubiak and A. Sostak is an instance of a general fuzzification procedure for topological categories, which amounts to the construction of a new topological category from a given one. This fuzzification procedure motivates a partial dualization of the machinery of tower extension of topological constructs of D. Zhang, thereby providing the procedure of tower extension of topological categories. With the help of this dualization, we arrive at the meta-mathematical result that the concept of (L,M)-fuzzy topology and the notion of approach space of R. Lowen are ''dual'' to each other.
On a Category of Extensional Fuzzy Rough Approximation L-valued Spaces
2016
We establish extensionality of some upper and lower fuzzy rough approximation operators on an L-valued set. Taking as the ground basic properties of these operators, we introduce the concept of an (extensional) fuzzy rough approximation L-valued space. We apply fuzzy functions satisfying certain continuity-type conditions, as morphisms between such spaces, and in the result obtain a category \(\mathcal{FRA}{} \mathbf{SPA}(L)\) of fuzzy rough approximation L-valued spaces. An interpretation of fuzzy rough approximation L-valued spaces as L-fuzzy (di)topological spaces is presented and applied for constructing examples in category \(\mathcal{FRA}{} \mathbf{SPA}(L)\).
On the category Set(JCPos)
2006
Category Set(JCPos) of lattice-valued subsets of sets is introduced and studied. We prove that it is topological over SetxJCPos and show its ''natural'' coalgebraic subcategory.
Categorically algebraic topology versus universal topology
2013
This paper continues to develop the theory of categorically algebraic (catalg) topology, introduced as a common framework for the majority of the existing many-valued topological settings, to provide convenient means of interaction between different approaches. Motivated by the results of universal topology of H. Herrlich, we show that a concrete category is fibre-small and topological if and only if it is concretely isomorphic to a subcategory of a category of catalg topological structures, which is definable by topological co-axioms.
Some remarks on the category SET(L), part III
2004
This paper considers the category SET(L) of L-subsets of sets with a fixed basis L and is a continuation of our previous investigation of this category. Here we study its general properties (e.g., we derive that the category is a topological construct) as well as some of its special objects and morphisms.
Fuzzy algebras as a framework for fuzzy topology
2011
The paper introduces a variety-based version of the notion of the (L,M)-fuzzy topological space of Kubiak and Sostak and embeds the respective category into a suitable modification of the category of topological systems of Vickers. The new concepts provide a common framework for different approaches to fuzzy topology and topological systems existing in the literature, paving the way for studying the problem of interweaving algebra and topology in mathematics, which was raised by Denniston, Melton and Rodabaugh in their recent research on variable-basis topological systems over the category of locales.
Topological systems and Artin glueing
2012
Abstract Using methods of categorical fuzzy topology, the paper shows a relation between topological systems of S. Vickers and Artin glueing of M. Artin. Inspired by the problem of interrelations between algebra and topology, we show the necessary and sufficient conditions for the category, obtained by Artin glueing along an adjoint functor, to be (co)algebraic and (co)monadic, incorporating the respective result of G. Wraith. As a result, we confirm the algebraic nature of the category of topological systems, showing that it is monadic.